revm_inspector/
eip3155.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
use crate::{inspectors::GasInspector, Inspector};
use revm::{
    bytecode::opcode::OpCode,
    context::Cfg,
    context_interface::{CfgGetter, Journal, JournalGetter, Transaction, TransactionGetter},
    interpreter::{
        interpreter_types::{Jumps, LoopControl, MemoryTrait, StackTrait},
        CallInputs, CallOutcome, CreateInputs, CreateOutcome, Interpreter, InterpreterResult,
        InterpreterTypes, Stack,
    },
    primitives::{hex, HashMap, B256, U256},
};
use serde::Serialize;
use std::io::Write;

/// [EIP-3155](https://eips.ethereum.org/EIPS/eip-3155) tracer [Inspector].
pub struct TracerEip3155<CTX, INTR> {
    output: Box<dyn Write>,
    gas_inspector: GasInspector,
    /// Print summary of the execution.
    print_summary: bool,
    stack: Vec<U256>,
    pc: usize,
    opcode: u8,
    gas: u64,
    refunded: i64,
    mem_size: usize,
    skip: bool,
    include_memory: bool,
    memory: Option<String>,
    _phantom: std::marker::PhantomData<(CTX, INTR)>,
}

// # Output
// The CUT MUST output a `json` object for EACH operation.
#[derive(Serialize)]
#[serde(rename_all = "camelCase")]
struct Output {
    // Required fields:
    /// Program counter
    pc: u64,
    /// OpCode
    op: u8,
    /// Gas left before executing this operation
    gas: String,
    /// Gas cost of this operation
    gas_cost: String,
    /// Array of all values on the stack
    stack: Vec<String>,
    /// Depth of the call stack
    depth: u64,
    /// Data returned by the function call
    return_data: String,
    /// Amount of **global** gas refunded
    refund: String,
    /// Size of memory array
    mem_size: String,

    // Optional fields:
    /// Name of the operation
    #[serde(default, skip_serializing_if = "Option::is_none")]
    op_name: Option<&'static str>,
    /// Description of an error (should contain revert reason if supported)
    #[serde(default, skip_serializing_if = "Option::is_none")]
    error: Option<String>,
    /// Array of all allocated values
    #[serde(default, skip_serializing_if = "Option::is_none")]
    memory: Option<String>,
    /// Array of all stored values
    #[serde(default, skip_serializing_if = "Option::is_none")]
    storage: Option<HashMap<String, String>>,
    /// Array of values, Stack of the called function
    #[serde(default, skip_serializing_if = "Option::is_none")]
    return_stack: Option<Vec<String>>,
}

// # Summary and error handling
#[derive(Serialize)]
#[serde(rename_all = "camelCase")]
struct Summary {
    // Required fields:
    /// Root of the state trie after executing the transaction
    state_root: String,
    /// Return values of the function
    output: String,
    /// All gas used by the transaction
    gas_used: String,
    /// Bool whether transaction was executed successfully
    pass: bool,

    // Optional fields:
    /// Time in nanoseconds needed to execute the transaction
    #[serde(default, skip_serializing_if = "Option::is_none")]
    time: Option<u128>,
    /// Name of the fork rules used for execution
    #[serde(default, skip_serializing_if = "Option::is_none")]
    fork: Option<String>,
}

impl<CTX, INTR> TracerEip3155<CTX, INTR>
where
    CTX: CfgGetter + TransactionGetter,
    INTR:,
{
    /// Sets the writer to use for the output.
    pub fn set_writer(&mut self, writer: Box<dyn Write>) {
        self.output = writer;
    }

    /// Resets the Tracer to its initial state of [Self::new].
    /// This makes the inspector ready to be used again.
    pub fn clear(&mut self) {
        let Self {
            gas_inspector,
            stack,
            pc,
            opcode,
            gas,
            refunded,
            mem_size,
            skip,
            ..
        } = self;
        *gas_inspector = GasInspector::new();
        stack.clear();
        *pc = 0;
        *opcode = 0;
        *gas = 0;
        *refunded = 0;
        *mem_size = 0;
        *skip = false;
    }

    pub fn new(output: Box<dyn Write>) -> Self {
        Self {
            output,
            gas_inspector: GasInspector::new(),
            print_summary: true,
            include_memory: false,
            stack: Default::default(),
            memory: Default::default(),
            pc: 0,
            opcode: 0,
            gas: 0,
            refunded: 0,
            mem_size: 0,
            skip: false,
            _phantom: Default::default(),
        }
    }

    /// Don't include a summary at the end of the trace
    pub fn without_summary(mut self) -> Self {
        self.print_summary = false;
        self
    }

    /// Include a memory field for each step. This significantly increases processing time and output size.
    pub fn with_memory(mut self) -> Self {
        self.include_memory = true;
        self
    }

    fn write_value(&mut self, value: &impl serde::Serialize) -> std::io::Result<()> {
        serde_json::to_writer(&mut *self.output, value)?;
        self.output.write_all(b"\n")?;
        self.output.flush()
    }

    fn print_summary(&mut self, result: &InterpreterResult, context: &mut CTX) {
        if self.print_summary {
            let spec = context.cfg().spec().into();
            let gas_limit = context.tx().gas_limit();
            let value = Summary {
                state_root: B256::ZERO.to_string(),
                output: result.output.to_string(),
                gas_used: hex_number(gas_limit - self.gas_inspector.gas_remaining()),
                pass: result.is_ok(),
                time: None,
                fork: Some(spec.to_string()),
            };
            let _ = self.write_value(&value);
        }
    }
}

pub trait CloneStack {
    fn clone_from(&self) -> Vec<U256>;
}

impl CloneStack for Stack {
    fn clone_from(&self) -> Vec<U256> {
        self.data().to_vec()
    }
}

impl<CTX, INTR> Inspector<CTX, INTR> for TracerEip3155<CTX, INTR>
where
    CTX: CfgGetter + TransactionGetter + JournalGetter,
    INTR: InterpreterTypes<Stack: StackTrait + CloneStack>,
{
    fn initialize_interp(&mut self, interp: &mut Interpreter<INTR>, _: &mut CTX) {
        self.gas_inspector.initialize_interp(interp.control.gas());
    }

    fn step(&mut self, interp: &mut Interpreter<INTR>, _: &mut CTX) {
        self.gas_inspector.step(interp.control.gas());
        self.stack = interp.stack.clone_from();
        self.memory = if self.include_memory {
            Some(hex::encode_prefixed(
                interp.memory.slice(0..usize::MAX).as_ref(),
            ))
        } else {
            None
        };
        self.pc = interp.bytecode.pc();
        self.opcode = interp.bytecode.opcode();
        self.mem_size = interp.memory.size();
        self.gas = interp.control.gas().remaining();
        self.refunded = interp.control.gas().refunded();
    }

    fn step_end(&mut self, interp: &mut Interpreter<INTR>, context: &mut CTX) {
        self.gas_inspector.step_end(interp.control.gas());
        if self.skip {
            self.skip = false;
            return;
        }

        let value = Output {
            pc: self.pc as u64,
            op: self.opcode,
            gas: hex_number(self.gas),
            gas_cost: hex_number(self.gas_inspector.last_gas_cost()),
            stack: self.stack.iter().map(hex_number_u256).collect(),
            depth: context.journal().depth() as u64,
            return_data: "0x".to_string(),
            refund: hex_number(self.refunded as u64),
            mem_size: self.mem_size.to_string(),

            op_name: OpCode::new(self.opcode).map(|i| i.as_str()),
            error: if !interp.control.instruction_result().is_ok() {
                Some(format!("{:?}", interp.control.instruction_result()))
            } else {
                None
            },
            memory: self.memory.take(),
            storage: None,
            return_stack: None,
        };
        let _ = self.write_value(&value);
    }

    fn call_end(&mut self, context: &mut CTX, _: &CallInputs, outcome: &mut CallOutcome) {
        self.gas_inspector.call_end(outcome);

        if context.journal().depth() == 0 {
            self.print_summary(&outcome.result, context);
            // Clear the state if we are at the top level
            self.clear();
        }
    }

    fn create_end(&mut self, context: &mut CTX, _: &CreateInputs, outcome: &mut CreateOutcome) {
        self.gas_inspector.create_end(outcome);

        if context.journal().depth() == 0 {
            self.print_summary(&outcome.result, context);

            // Clear the state if we are at the top level
            self.clear();
        }
    }
}

fn hex_number(uint: u64) -> String {
    format!("0x{uint:x}")
}

fn hex_number_u256(b: &U256) -> String {
    let s = hex::encode(b.to_be_bytes::<32>());
    let s = s.trim_start_matches('0');
    if s.is_empty() {
        "0x0".to_string()
    } else {
        format!("0x{s}")
    }
}