revm_interpreter/instructions/data.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
use crate::{
gas::{cost_per_word, BASE, DATA_LOAD_GAS, VERYLOW},
interpreter::Interpreter,
interpreter_types::{
EofData, Immediates, InterpreterTypes, Jumps, LoopControl, MemoryTrait, RuntimeFlag,
StackTrait,
},
Host,
};
use primitives::{B256, U256};
pub fn data_load<WIRE: InterpreterTypes, H: Host + ?Sized>(
interpreter: &mut Interpreter<WIRE>,
_host: &mut H,
) {
require_eof!(interpreter);
gas!(interpreter, DATA_LOAD_GAS);
popn_top!([], offset, interpreter);
let offset_usize = as_usize_saturated!(offset);
let slice = interpreter.bytecode.data_slice(offset_usize, 32);
let mut word = [0u8; 32];
word[..slice.len()].copy_from_slice(slice);
*offset = U256::from_be_bytes(word);
}
pub fn data_loadn<WIRE: InterpreterTypes, H: Host + ?Sized>(
interpreter: &mut Interpreter<WIRE>,
_host: &mut H,
) {
require_eof!(interpreter);
gas!(interpreter, VERYLOW);
let offset = interpreter.bytecode.read_u16() as usize;
let slice = interpreter.bytecode.data_slice(offset, 32);
let mut word = [0u8; 32];
word[..slice.len()].copy_from_slice(slice);
push!(interpreter, B256::new(word).into());
// Add +2 to the instruction pointer to skip the offset
interpreter.bytecode.relative_jump(2);
}
pub fn data_size<WIRE: InterpreterTypes, H: Host + ?Sized>(
interpreter: &mut Interpreter<WIRE>,
_host: &mut H,
) {
require_eof!(interpreter);
gas!(interpreter, BASE);
push!(interpreter, U256::from(interpreter.bytecode.data_size()));
}
pub fn data_copy<WIRE: InterpreterTypes, H: Host + ?Sized>(
interpreter: &mut Interpreter<WIRE>,
_host: &mut H,
) {
require_eof!(interpreter);
gas!(interpreter, VERYLOW);
popn!([mem_offset, offset, size], interpreter);
// Sizes more than u64::MAX will spend all the gas in memory resize.
let size = as_usize_or_fail!(interpreter, size);
// Size of zero should not change the memory
if size == 0 {
return;
}
// Fail if mem offset is big as it will spend all the gas
let mem_offset = as_usize_or_fail!(interpreter, mem_offset);
resize_memory!(interpreter, mem_offset, size);
gas_or_fail!(interpreter, cost_per_word(size, VERYLOW));
let offset = as_usize_saturated!(offset);
let data = interpreter.bytecode.data();
// Set data from the eof to the shared memory. Padded it with zeros.
interpreter.memory.set_data(mem_offset, offset, size, data);
}
// TODO : Test
/*
#[cfg(test)]
mod test {
use bytecode::{Bytecode, Eof};
use primitives::{b256, bytes, Bytes};
use specification::hardfork::SpecId;
use std::sync::Arc;
use context_interface::DefaultEthereumWiring;
use super::*;
use crate::{table::make_instruction_table, DummyHost, Gas};
use bytecode::opcode::{DATACOPY, DATALOAD, DATALOADN, DATASIZE};
fn dummy_eof(code_bytes: Bytes) -> Bytecode {
let bytes = bytes!("ef000101000402000100010400000000800000fe");
let mut eof = Eof::decode(bytes).unwrap();
eof.body.data_section =
bytes!("000000000000000000000000000000000000000000000000000000000000000102030405");
eof.header.data_size = eof.body.data_section.len() as u16;
eof.header.code_sizes[0] = code_bytes.len() as u16;
eof.body.code_section[0] = code_bytes.len();
eof.body.code = code_bytes;
Bytecode::Eof(Arc::new(eof))
}
#[test]
fn dataload_dataloadn() {
let table = make_instruction_table::<Interpreter, DummyHost<DefaultEthereumWiring>>();
let mut host = DummyHost::default();
let eof = dummy_eof(Bytes::from([
DATALOAD, DATALOADN, 0x00, 0x00, DATALOAD, DATALOADN, 0x00, 35, DATALOAD, DATALOADN,
0x00, 36, DATASIZE,
]));
let mut interp = Interpreter::new_bytecode(eof);
interp.spec_id = SpecId::PRAGUE;
interp.gas = Gas::new(10000);
// DATALOAD
interp.stack.push(U256::from(0)).unwrap();
interp.step(&table, &mut host);
assert_eq!(interp.stack.data(), &vec![U256::from(0x01)]);
interp.stack.pop().unwrap();
// DATALOADN
interp.step(&table, &mut host);
assert_eq!(interp.stack.data(), &vec![U256::from(0x01)]);
interp.stack.pop().unwrap();
// DATALOAD (padding)
interp.stack.push(U256::from(35)).unwrap();
interp.step(&table, &mut host);
assert_eq!(
interp.stack.data(),
&vec![b256!("0500000000000000000000000000000000000000000000000000000000000000").into()]
);
interp.stack.pop().unwrap();
// DATALOADN (padding)
interp.step(&table, &mut host);
assert_eq!(
interp.stack.data(),
&vec![b256!("0500000000000000000000000000000000000000000000000000000000000000").into()]
);
interp.stack.pop().unwrap();
// DATALOAD (out of bounds)
interp.stack.push(U256::from(36)).unwrap();
interp.step(&table, &mut host);
assert_eq!(interp.stack.data(), &vec![U256::ZERO]);
interp.stack.pop().unwrap();
// DATALOADN (out of bounds)
interp.step(&table, &mut host);
assert_eq!(interp.stack.data(), &vec![U256::ZERO]);
interp.stack.pop().unwrap();
// DATA SIZE
interp.step(&table, &mut host);
assert_eq!(interp.stack.data(), &vec![U256::from(36)]);
}
#[test]
fn data_copy() {
let table = make_instruction_table::<Interpreter, DummyHost<DefaultEthereumWiring>>();
let mut host = DummyHost::default();
let eof = dummy_eof(Bytes::from([DATACOPY, DATACOPY, DATACOPY, DATACOPY]));
let mut interp = Interpreter::new_bytecode(eof);
interp.gas = Gas::new(10000);
interp.spec_id = SpecId::PRAGUE;
// Data copy
// size, offset mem_offset,
interp.stack.push(U256::from(32)).unwrap();
interp.stack.push(U256::from(0)).unwrap();
interp.stack.push(U256::from(0)).unwrap();
interp.step(&table, &mut host);
assert_eq!(
interp.shared_memory.context_memory(),
&bytes!("0000000000000000000000000000000000000000000000000000000000000001")
);
// Data copy (Padding)
// size, offset mem_offset,
interp.stack.push(U256::from(2)).unwrap();
interp.stack.push(U256::from(35)).unwrap();
interp.stack.push(U256::from(1)).unwrap();
interp.step(&table, &mut host);
assert_eq!(
interp.shared_memory.context_memory(),
&bytes!("0005000000000000000000000000000000000000000000000000000000000001")
);
// Data copy (Out of bounds)
// size, offset mem_offset,
interp.stack.push(U256::from(2)).unwrap();
interp.stack.push(U256::from(37)).unwrap();
interp.stack.push(U256::from(1)).unwrap();
interp.step(&table, &mut host);
assert_eq!(
interp.shared_memory.context_memory(),
&bytes!("0000000000000000000000000000000000000000000000000000000000000001")
);
// Data copy (Size == 0)
// mem_offset, offset, size
interp.stack.push(U256::from(0)).unwrap();
interp.stack.push(U256::from(37)).unwrap();
interp.stack.push(U256::from(1)).unwrap();
interp.step(&table, &mut host);
assert_eq!(
interp.shared_memory.context_memory(),
&bytes!("0000000000000000000000000000000000000000000000000000000000000001")
);
}
}
*/