revm_interpreter/instructions/
i256.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
use core::cmp::Ordering;
use primitives::U256;

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(i8)]
pub enum Sign {
    // Same as `cmp::Ordering`
    Minus = -1,
    Zero = 0,
    #[allow(dead_code)] // "constructed" with `mem::transmute` in `i256_sign` below
    Plus = 1,
}

pub const MAX_POSITIVE_VALUE: U256 = U256::from_limbs([
    0xffffffffffffffff,
    0xffffffffffffffff,
    0xffffffffffffffff,
    0x7fffffffffffffff,
]);

pub const MIN_NEGATIVE_VALUE: U256 = U256::from_limbs([
    0x0000000000000000,
    0x0000000000000000,
    0x0000000000000000,
    0x8000000000000000,
]);

const FLIPH_BITMASK_U64: u64 = 0x7FFFFFFFFFFFFFFF;

#[inline]
pub fn i256_sign(val: &U256) -> Sign {
    if val.bit(U256::BITS - 1) {
        Sign::Minus
    } else {
        // SAFETY: false == 0 == Zero, true == 1 == Plus
        unsafe { core::mem::transmute::<bool, Sign>(!val.is_zero()) }
    }
}

#[inline]
pub fn i256_sign_compl(val: &mut U256) -> Sign {
    let sign = i256_sign(val);
    if sign == Sign::Minus {
        two_compl_mut(val);
    }
    sign
}

#[inline]
fn u256_remove_sign(val: &mut U256) {
    // SAFETY: U256 does not have any padding bytes
    unsafe {
        val.as_limbs_mut()[3] &= FLIPH_BITMASK_U64;
    }
}

#[inline]
pub fn two_compl_mut(op: &mut U256) {
    *op = two_compl(*op);
}

#[inline]
pub fn two_compl(op: U256) -> U256 {
    op.wrapping_neg()
}

#[inline]
pub fn i256_cmp(first: &U256, second: &U256) -> Ordering {
    let first_sign = i256_sign(first);
    let second_sign = i256_sign(second);
    match first_sign.cmp(&second_sign) {
        // Note: Adding `if first_sign != Sign::Zero` to short circuit zero comparisons performs
        // slower on average, as of #582
        Ordering::Equal => first.cmp(second),
        o => o,
    }
}

#[inline]
pub fn i256_div(mut first: U256, mut second: U256) -> U256 {
    let second_sign = i256_sign_compl(&mut second);
    if second_sign == Sign::Zero {
        return U256::ZERO;
    }

    let first_sign = i256_sign_compl(&mut first);
    if first == MIN_NEGATIVE_VALUE && second == U256::from(1) {
        return two_compl(MIN_NEGATIVE_VALUE);
    }

    // Necessary overflow checks are done above, perform the division
    let mut d = first / second;

    // Set sign bit to zero
    u256_remove_sign(&mut d);

    // Two's complement only if the signs are different
    // Note: This condition has better codegen than an exhaustive match, as of #582
    if (first_sign == Sign::Minus && second_sign != Sign::Minus)
        || (second_sign == Sign::Minus && first_sign != Sign::Minus)
    {
        two_compl(d)
    } else {
        d
    }
}

#[inline]
pub fn i256_mod(mut first: U256, mut second: U256) -> U256 {
    let first_sign = i256_sign_compl(&mut first);
    if first_sign == Sign::Zero {
        return U256::ZERO;
    }

    let second_sign = i256_sign_compl(&mut second);
    if second_sign == Sign::Zero {
        return U256::ZERO;
    }

    let mut r = first % second;

    // Set sign bit to zero
    u256_remove_sign(&mut r);

    if first_sign == Sign::Minus {
        two_compl(r)
    } else {
        r
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use core::num::Wrapping;
    use primitives::uint;

    #[test]
    fn div_i256() {
        // Sanity checks based on i8. Notice that we need to use `Wrapping` here because
        // Rust will prevent the overflow by default whereas the EVM does not.
        assert_eq!(Wrapping(i8::MIN) / Wrapping(-1), Wrapping(i8::MIN));
        assert_eq!(i8::MAX / -1, -i8::MAX);

        uint! {
            assert_eq!(i256_div(MIN_NEGATIVE_VALUE, -1_U256), MIN_NEGATIVE_VALUE);
            assert_eq!(i256_div(MIN_NEGATIVE_VALUE, 1_U256), MIN_NEGATIVE_VALUE);
            assert_eq!(i256_div(MAX_POSITIVE_VALUE, 1_U256), MAX_POSITIVE_VALUE);
            assert_eq!(i256_div(MAX_POSITIVE_VALUE, -1_U256), -1_U256 * MAX_POSITIVE_VALUE);
            assert_eq!(i256_div(100_U256, -1_U256), -100_U256);
            assert_eq!(i256_div(100_U256, 2_U256), 50_U256);
        }
    }
    #[test]
    fn test_i256_sign() {
        uint! {
            assert_eq!(i256_sign(&0_U256), Sign::Zero);
            assert_eq!(i256_sign(&1_U256), Sign::Plus);
            assert_eq!(i256_sign(&-1_U256), Sign::Minus);
            assert_eq!(i256_sign(&MIN_NEGATIVE_VALUE), Sign::Minus);
            assert_eq!(i256_sign(&MAX_POSITIVE_VALUE), Sign::Plus);
        }
    }

    #[test]
    fn test_i256_sign_compl() {
        uint! {
            let mut zero = 0_U256;
            let mut positive = 1_U256;
            let mut negative = -1_U256;
            assert_eq!(i256_sign_compl(&mut zero), Sign::Zero);
            assert_eq!(i256_sign_compl(&mut positive), Sign::Plus);
            assert_eq!(i256_sign_compl(&mut negative), Sign::Minus);
        }
    }

    #[test]
    fn test_two_compl() {
        uint! {
            assert_eq!(two_compl(0_U256), 0_U256);
            assert_eq!(two_compl(1_U256), -1_U256);
            assert_eq!(two_compl(-1_U256), 1_U256);
            assert_eq!(two_compl(2_U256), -2_U256);
            assert_eq!(two_compl(-2_U256), 2_U256);

            // Two's complement of the min value is itself.
            assert_eq!(two_compl(MIN_NEGATIVE_VALUE), MIN_NEGATIVE_VALUE);
        }
    }

    #[test]
    fn test_two_compl_mut() {
        uint! {
            let mut value = 1_U256;
            two_compl_mut(&mut value);
            assert_eq!(value, -1_U256);
        }
    }

    #[test]
    fn test_i256_cmp() {
        uint! {
            assert_eq!(i256_cmp(&1_U256, &2_U256), Ordering::Less);
            assert_eq!(i256_cmp(&2_U256, &2_U256), Ordering::Equal);
            assert_eq!(i256_cmp(&3_U256, &2_U256), Ordering::Greater);
            assert_eq!(i256_cmp(&-1_U256, &-1_U256), Ordering::Equal);
            assert_eq!(i256_cmp(&-1_U256, &-2_U256), Ordering::Greater);
            assert_eq!(i256_cmp(&-1_U256, &0_U256), Ordering::Less);
            assert_eq!(i256_cmp(&-2_U256, &2_U256), Ordering::Less);
        }
    }

    #[test]
    fn test_i256_div() {
        uint! {
            assert_eq!(i256_div(1_U256, 0_U256), 0_U256);
            assert_eq!(i256_div(0_U256, 1_U256), 0_U256);
            assert_eq!(i256_div(0_U256, -1_U256), 0_U256);
            assert_eq!(i256_div(MIN_NEGATIVE_VALUE, 1_U256), MIN_NEGATIVE_VALUE);
            assert_eq!(i256_div(4_U256, 2_U256), 2_U256);
            assert_eq!(i256_div(MIN_NEGATIVE_VALUE, MIN_NEGATIVE_VALUE), 1_U256);
            assert_eq!(i256_div(2_U256, -1_U256), -2_U256);
            assert_eq!(i256_div(-2_U256, -1_U256), 2_U256);
        }
    }

    #[test]
    fn test_i256_mod() {
        uint! {
            assert_eq!(i256_mod(0_U256, 1_U256), 0_U256);
            assert_eq!(i256_mod(1_U256, 0_U256), 0_U256);
            assert_eq!(i256_mod(4_U256, 2_U256), 0_U256);
            assert_eq!(i256_mod(3_U256, 2_U256), 1_U256);
            assert_eq!(i256_mod(MIN_NEGATIVE_VALUE, 1_U256), 0_U256);
            assert_eq!(i256_mod(2_U256, 2_U256), 0_U256);
            assert_eq!(i256_mod(2_U256, 3_U256), 2_U256);
            assert_eq!(i256_mod(-2_U256, 3_U256), -2_U256);
            assert_eq!(i256_mod(2_U256, -3_U256), 2_U256);
            assert_eq!(i256_mod(-2_U256, -3_U256), -2_U256);
        }
    }
}