revm_interpreter/instructions/
stack.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
use crate::{
    gas,
    instructions::utility::cast_slice_to_u256,
    interpreter::Interpreter,
    interpreter_types::{
        Immediates, InterpreterTypes, Jumps, LoopControl, RuntimeFlag, StackTrait,
    },
    Host,
};
use primitives::U256;

pub fn pop<WIRE: InterpreterTypes, H: Host + ?Sized>(
    interpreter: &mut Interpreter<WIRE>,
    _host: &mut H,
) {
    gas!(interpreter, gas::BASE);
    // Can ignore return. as relative N jump is safe operation.
    popn!([_i], interpreter);
}

/// EIP-3855: PUSH0 instruction
///
/// Introduce a new instruction which pushes the constant value 0 onto the stack.
pub fn push0<WIRE: InterpreterTypes, H: Host + ?Sized>(
    interpreter: &mut Interpreter<WIRE>,
    _host: &mut H,
) {
    check!(interpreter, SHANGHAI);
    gas!(interpreter, gas::BASE);
    push!(interpreter, U256::ZERO);
}

pub fn push<const N: usize, WIRE: InterpreterTypes, H: Host + ?Sized>(
    interpreter: &mut Interpreter<WIRE>,
    _host: &mut H,
) {
    gas!(interpreter, gas::VERYLOW);
    // TODO : Check performance degradation.
    push!(interpreter, U256::ZERO);
    popn_top!([], top, interpreter);

    let imm = interpreter.bytecode.read_slice(N);
    cast_slice_to_u256(imm, top);

    // Can ignore return. as relative N jump is safe operation
    interpreter.bytecode.relative_jump(N as isize);
}

pub fn dup<const N: usize, WIRE: InterpreterTypes, H: Host + ?Sized>(
    interpreter: &mut Interpreter<WIRE>,
    _host: &mut H,
) {
    gas!(interpreter, gas::VERYLOW);
    if !interpreter.stack.dup(N) {
        interpreter
            .control
            .set_instruction_result(crate::InstructionResult::StackOverflow);
    }
}

pub fn swap<const N: usize, WIRE: InterpreterTypes, H: Host + ?Sized>(
    interpreter: &mut Interpreter<WIRE>,
    _host: &mut H,
) {
    gas!(interpreter, gas::VERYLOW);
    assert!(N != 0);
    if !interpreter.stack.exchange(0, N) {
        interpreter
            .control
            .set_instruction_result(crate::InstructionResult::StackOverflow);
    }
}

pub fn dupn<WIRE: InterpreterTypes, H: Host + ?Sized>(
    interpreter: &mut Interpreter<WIRE>,
    _host: &mut H,
) {
    require_eof!(interpreter);
    gas!(interpreter, gas::VERYLOW);
    let imm = interpreter.bytecode.read_u8();
    if !interpreter.stack.dup(imm as usize + 1) {
        interpreter
            .control
            .set_instruction_result(crate::InstructionResult::StackOverflow);
    }
    interpreter.bytecode.relative_jump(1);
}

pub fn swapn<WIRE: InterpreterTypes, H: Host + ?Sized>(
    interpreter: &mut Interpreter<WIRE>,
    _host: &mut H,
) {
    require_eof!(interpreter);
    gas!(interpreter, gas::VERYLOW);
    let imm = interpreter.bytecode.read_u8();
    if !interpreter.stack.exchange(0, imm as usize + 1) {
        interpreter
            .control
            .set_instruction_result(crate::InstructionResult::StackOverflow);
    }
    interpreter.bytecode.relative_jump(1);
}

pub fn exchange<WIRE: InterpreterTypes, H: Host + ?Sized>(
    interpreter: &mut Interpreter<WIRE>,
    _host: &mut H,
) {
    require_eof!(interpreter);
    gas!(interpreter, gas::VERYLOW);
    let imm = interpreter.bytecode.read_u8();
    let n = (imm >> 4) + 1;
    let m = (imm & 0x0F) + 1;
    if !interpreter.stack.exchange(n as usize, m as usize) {
        interpreter
            .control
            .set_instruction_result(crate::InstructionResult::StackOverflow);
    }
    interpreter.bytecode.relative_jump(1);
}

// TODO : Tests
/*
#[cfg(test)]
mod test {

    use super::*;
    use crate::{table::make_instruction_table, DummyHost, Gas, InstructionResult};
    use bytecode::opcode::{DUPN, EXCHANGE, SWAPN};
    use bytecode::Bytecode;
    use specification::hardfork::SpecId;
    use context_interface::DefaultEthereumWiring;

    #[test]
    fn dupn() {
        let table = make_instruction_table::<Interpreter, DummyHost<DefaultEthereumWiring>>();
        let mut host = DummyHost::default();
        let mut interp = Interpreter::new_bytecode(Bytecode::LegacyRaw(
            [DUPN, 0x00, DUPN, 0x01, DUPN, 0x02].into(),
        ));
        interp.is_eof = true;
        interp.spec_id = SpecId::PRAGUE;
        interp.gas = Gas::new(10000);

        interp.stack.push(U256::from(10)).unwrap();
        interp.stack.push(U256::from(20)).unwrap();
        interp.step(&table, &mut host);
        assert_eq!(interp.stack.pop(), Ok(U256::from(20)));
        interp.step(&table, &mut host);
        assert_eq!(interp.stack.pop(), Ok(U256::from(10)));
        interp.step(&table, &mut host);
        assert_eq!(interp.instruction_result, InstructionResult::StackUnderflow);
    }

    #[test]
    fn swapn() {
        let table = make_instruction_table::<Interpreter, DummyHost<DefaultEthereumWiring>>();
        let mut host = DummyHost::default();
        let mut interp =
            Interpreter::new_bytecode(Bytecode::LegacyRaw([SWAPN, 0x00, SWAPN, 0x01].into()));
        interp.is_eof = true;
        interp.gas = Gas::new(10000);
        interp.spec_id = SpecId::PRAGUE;

        interp.stack.push(U256::from(10)).unwrap();
        interp.stack.push(U256::from(20)).unwrap();
        interp.stack.push(U256::from(0)).unwrap();
        interp.step(&table, &mut host);
        assert_eq!(interp.stack.peek(0), Ok(U256::from(20)));
        assert_eq!(interp.stack.peek(1), Ok(U256::from(0)));
        interp.step(&table, &mut host);
        assert_eq!(interp.stack.peek(0), Ok(U256::from(10)));
        assert_eq!(interp.stack.peek(2), Ok(U256::from(20)));
    }

    #[test]
    fn exchange() {
        let table = make_instruction_table::<Interpreter, DummyHost<DefaultEthereumWiring>>();
        let mut host = DummyHost::default();
        let mut interp =
            Interpreter::new_bytecode(Bytecode::LegacyRaw([EXCHANGE, 0x00, EXCHANGE, 0x11].into()));
        interp.is_eof = true;
        interp.gas = Gas::new(10000);
        interp.spec_id = SpecId::PRAGUE;

        interp.stack.push(U256::from(1)).unwrap();
        interp.stack.push(U256::from(5)).unwrap();
        interp.stack.push(U256::from(10)).unwrap();
        interp.stack.push(U256::from(15)).unwrap();
        interp.stack.push(U256::from(0)).unwrap();

        interp.step(&table, &mut host);
        assert_eq!(interp.stack.peek(1), Ok(U256::from(10)));
        assert_eq!(interp.stack.peek(2), Ok(U256::from(15)));
        interp.step(&table, &mut host);
        assert_eq!(interp.stack.peek(2), Ok(U256::from(1)));
        assert_eq!(interp.stack.peek(4), Ok(U256::from(15)));
    }
}
*/