revm_interpreter/
interpreter.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
pub mod ext_bytecode;
mod input;
mod loop_control;
mod return_data;
mod runtime_flags;
#[cfg(feature = "serde")]
pub mod serde;
mod shared_memory;
mod stack;
mod subroutine_stack;

use crate::{
    interpreter_types::*, table::CustomInstruction, Gas, Host, Instruction, InstructionResult,
    InterpreterAction,
};
use core::cell::RefCell;
pub use ext_bytecode::ExtBytecode;
pub use input::InputsImpl;
use loop_control::LoopControl as LoopControlImpl;
use primitives::Bytes;
use return_data::ReturnDataImpl;
pub use runtime_flags::RuntimeFlags;
pub use shared_memory::{num_words, MemoryGetter, SharedMemory, EMPTY_SHARED_MEMORY};
use specification::hardfork::SpecId;
pub use stack::{Stack, STACK_LIMIT};
use std::rc::Rc;
use subroutine_stack::SubRoutineImpl;

#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(::serde::Serialize, ::serde::Deserialize))]
pub struct Interpreter<WIRE: InterpreterTypes> {
    pub bytecode: WIRE::Bytecode,
    pub stack: WIRE::Stack,
    pub return_data: WIRE::ReturnData,
    pub memory: WIRE::Memory,
    pub input: WIRE::Input,
    pub sub_routine: WIRE::SubRoutineStack,
    pub control: WIRE::Control,
    pub runtime_flag: WIRE::RuntimeFlag,
    pub extend: WIRE::Extend,
}

impl<EXT: Default, MG: MemoryGetter> Interpreter<EthInterpreter<EXT, MG>> {
    /// Create new interpreter
    pub fn new(
        memory: Rc<RefCell<MG>>,
        bytecode: ExtBytecode,
        inputs: InputsImpl,
        is_static: bool,
        is_eof_init: bool,
        spec_id: SpecId,
        gas_limit: u64,
    ) -> Self {
        let runtime_flag = RuntimeFlags {
            spec_id,
            is_static,
            is_eof: bytecode.is_eof(),
            is_eof_init,
        };

        Self {
            bytecode,
            stack: Stack::new(),
            return_data: ReturnDataImpl::default(),
            memory,
            input: inputs,
            sub_routine: SubRoutineImpl::default(),
            control: LoopControlImpl::new(gas_limit),
            runtime_flag,
            extend: EXT::default(),
        }
    }
}

pub struct EthInterpreter<EXT = (), MG = SharedMemory> {
    _phantom: core::marker::PhantomData<fn() -> (EXT, MG)>,
}

impl<EXT, MG: MemoryGetter> InterpreterTypes for EthInterpreter<EXT, MG> {
    type Stack = Stack;
    type Memory = Rc<RefCell<MG>>;
    type Bytecode = ExtBytecode;
    type ReturnData = ReturnDataImpl;
    type Input = InputsImpl;
    type SubRoutineStack = SubRoutineImpl;
    type Control = LoopControlImpl;
    type RuntimeFlag = RuntimeFlags;
    type Extend = EXT;
}

pub trait InstructionProvider: Clone {
    type WIRE: InterpreterTypes;
    type Host;

    fn new(context: &mut Self::Host) -> Self;

    fn table(&mut self) -> &[impl CustomInstruction<Wire = Self::WIRE, Host = Self::Host>; 256];
}

pub struct EthInstructionProvider<WIRE: InterpreterTypes, HOST> {
    instruction_table: Rc<[Instruction<WIRE, HOST>; 256]>,
}

impl<WIRE, HOST> Clone for EthInstructionProvider<WIRE, HOST>
where
    WIRE: InterpreterTypes,
{
    fn clone(&self) -> Self {
        Self {
            instruction_table: self.instruction_table.clone(),
        }
    }
}

impl<WIRE, HOST> InstructionProvider for EthInstructionProvider<WIRE, HOST>
where
    WIRE: InterpreterTypes,
    HOST: Host,
{
    type WIRE = WIRE;
    type Host = HOST;

    fn new(_context: &mut Self::Host) -> Self {
        Self {
            instruction_table: Rc::new(crate::table::make_instruction_table::<WIRE, HOST>()),
        }
    }

    // TODO : Make impl a associate type. With this associate type we can implement.
    // InspectorInstructionProvider over generic type.
    fn table(&mut self) -> &[impl CustomInstruction<Wire = Self::WIRE, Host = Self::Host>; 256] {
        self.instruction_table.as_ref()
    }
}

impl<IW: InterpreterTypes, H: Host> CustomInstruction for Instruction<IW, H> {
    type Wire = IW;
    type Host = H;

    #[inline]
    fn exec(&self, interpreter: &mut Interpreter<Self::Wire>, host: &mut Self::Host) {
        (self)(interpreter, host);
    }

    #[inline]
    fn from_base(instruction: Instruction<Self::Wire, Self::Host>) -> Self {
        instruction
    }
}

impl<IW: InterpreterTypes> Interpreter<IW> {
    /// Executes the instruction at the current instruction pointer.
    ///
    /// Internally it will increment instruction pointer by one.
    #[inline]
    pub(crate) fn step<FN, H: Host>(&mut self, instruction_table: &[FN; 256], host: &mut H)
    where
        FN: CustomInstruction<Wire = IW, Host = H>,
    {
        // Get current opcode.
        let opcode = self.bytecode.opcode();

        // SAFETY: In analysis we are doing padding of bytecode so that we are sure that last
        // byte instruction is STOP so we are safe to just increment program_counter bcs on last instruction
        // it will do noop and just stop execution of this contract
        self.bytecode.relative_jump(1);

        // Execute instruction.
        instruction_table[opcode as usize].exec(self, host)
    }

    /// Executes the interpreter until it returns or stops.
    pub fn run<FN, H: Host>(
        &mut self,
        instruction_table: &[FN; 256],
        host: &mut H,
    ) -> InterpreterAction
    where
        FN: CustomInstruction<Wire = IW, Host = H>,
    {
        self.control
            .set_next_action(InterpreterAction::None, InstructionResult::Continue);

        // Main loop
        while self.control.instruction_result().is_continue() {
            self.step(instruction_table, host);
        }

        // Return next action if it is some.
        let action = self.control.take_next_action();
        if action.is_some() {
            return action;
        }
        // If not, return action without output as it is a halt.
        InterpreterAction::Return {
            result: InterpreterResult {
                result: self.control.instruction_result(),
                // Return empty bytecode
                output: Bytes::new(),
                gas: *self.control.gas(),
            },
        }
    }
}

/// The result of an interpreter operation.
#[derive(Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(::serde::Serialize, ::serde::Deserialize))]
pub struct InterpreterResult {
    /// The result of the instruction execution.
    pub result: InstructionResult,
    /// The output of the instruction execution.
    pub output: Bytes,
    /// The gas usage information.
    pub gas: Gas,
}

impl InterpreterResult {
    /// Returns a new `InterpreterResult` with the given values.
    pub fn new(result: InstructionResult, output: Bytes, gas: Gas) -> Self {
        Self {
            result,
            output,
            gas,
        }
    }

    /// Returns whether the instruction result is a success.
    #[inline]
    pub const fn is_ok(&self) -> bool {
        self.result.is_ok()
    }

    /// Returns whether the instruction result is a revert.
    #[inline]
    pub const fn is_revert(&self) -> bool {
        self.result.is_revert()
    }

    /// Returns whether the instruction result is an error.
    #[inline]
    pub const fn is_error(&self) -> bool {
        self.result.is_error()
    }
}

// /// Resize the memory to the new size. Returns whether the gas was enough to resize the memory.
// #[inline(never)]
// #[cold]
// #[must_use]
// pub fn resize_memory(memory: &mut SharedMemory, gas: &mut Gas, new_size: usize) -> bool {
//     let new_words = num_words(new_size as u64);
//     let new_cost = gas::memory_gas(new_words);
//     let current_cost = memory.current_expansion_cost();
//     let cost = new_cost - current_cost;
//     let success = gas.record_cost(cost);
//     if success {
//         memory.resize((new_words as usize) * 32);
//     }
//     success
// }

#[cfg(test)]
mod tests {
    // use super::*;
    // use crate::{table::InstructionTable, DummyHost};

    // #[test]
    // fn object_safety() {
    //     let mut interp = Interpreter::new(Contract::default(), u64::MAX, false);
    //     interp.spec_id = SpecId::CANCUN;
    //     let mut host = crate::DummyHost::<DefaultEthereumWiring>::default();
    //     let table: &InstructionTable<DummyHost<DefaultEthereumWiring>> =
    //         &crate::table::make_instruction_table::<Interpreter, DummyHost<DefaultEthereumWiring>>(
    //         );
    //     let _ = interp.run(EMPTY_SHARED_MEMORY, table, &mut host);

    //     let host: &mut dyn Host<EvmWiringT = DefaultEthereumWiring> =
    //         &mut host as &mut dyn Host<EvmWiringT = DefaultEthereumWiring>;
    //     let table: &InstructionTable<dyn Host<EvmWiringT = DefaultEthereumWiring>> =
    //         &crate::table::make_instruction_table::<
    //             Interpreter,
    //             dyn Host<EvmWiringT = DefaultEthereumWiring>,
    //         >();
    //     let _ = interp.run(EMPTY_SHARED_MEMORY, table, host);
    // }

    use super::*;
    use bytecode::Bytecode;
    use primitives::{Address, Bytes, U256};

    #[test]
    #[cfg(feature = "serde")]
    fn test_interpreter_serde() {
        let bytecode = Bytecode::new_raw(Bytes::from(&[0x60, 0x00, 0x60, 0x00, 0x01][..]));
        let interpreter = Interpreter::<EthInterpreter>::new(
            Rc::new(RefCell::new(SharedMemory::new())),
            ExtBytecode::new(bytecode),
            InputsImpl {
                target_address: Address::ZERO,
                caller_address: Address::ZERO,
                input: Bytes::default(),
                call_value: U256::ZERO,
            },
            false,
            false,
            SpecId::LATEST,
            u64::MAX,
        );

        let serialized = bincode::serialize(&interpreter).unwrap();

        let deserialized: Interpreter<EthInterpreter> = bincode::deserialize(&serialized).unwrap();

        assert_eq!(
            interpreter.bytecode.pc(),
            deserialized.bytecode.pc(),
            "Program counter should be preserved"
        );
    }
}