revm_interpreter/interpreter/
stack.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
use crate::InstructionResult;
use core::{fmt, ptr};
use primitives::{B256, U256};
use std::vec::Vec;

/// EVM interpreter stack limit.
pub const STACK_LIMIT: usize = 1024;

/// EVM stack with [STACK_LIMIT] capacity of words.
#[derive(Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize))]
pub struct Stack {
    /// The underlying data of the stack.
    data: Vec<U256>,
}

impl fmt::Display for Stack {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("[")?;
        for (i, x) in self.data.iter().enumerate() {
            if i > 0 {
                f.write_str(", ")?;
            }
            write!(f, "{x}")?;
        }
        f.write_str("]")
    }
}

impl Default for Stack {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl Clone for Stack {
    fn clone(&self) -> Self {
        // Use `Self::new()` to ensure the cloned Stack maintains the STACK_LIMIT capacity,
        // and then copy the data. This preserves the invariant that Stack always has
        // STACK_LIMIT capacity, which is crucial for the safety and correctness of other methods.
        let mut new_stack = Self::new();
        new_stack.data.extend_from_slice(&self.data);
        new_stack
    }
}

impl Stack {
    /// Instantiate a new stack with the [default stack limit][STACK_LIMIT].
    #[inline]
    pub fn new() -> Self {
        Self {
            // SAFETY: expansion functions assume that capacity is `STACK_LIMIT`.
            data: Vec::with_capacity(STACK_LIMIT),
        }
    }

    /// Returns the length of the stack in words.
    #[inline]
    pub fn len(&self) -> usize {
        self.data.len()
    }

    /// Returns whether the stack is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.data.is_empty()
    }

    /// Returns a reference to the underlying data buffer.
    #[inline]
    pub fn data(&self) -> &Vec<U256> {
        &self.data
    }

    /// Returns a mutable reference to the underlying data buffer.
    #[inline]
    pub fn data_mut(&mut self) -> &mut Vec<U256> {
        &mut self.data
    }

    /// Consumes the stack and returns the underlying data buffer.
    #[inline]
    pub fn into_data(self) -> Vec<U256> {
        self.data
    }

    /// Removes the topmost element from the stack and returns it, or `StackUnderflow` if it is
    /// empty.
    #[inline]
    pub fn pop(&mut self) -> Result<U256, InstructionResult> {
        self.data.pop().ok_or(InstructionResult::StackUnderflow)
    }

    /// Removes the topmost element from the stack and returns it.
    ///
    /// # Safety
    ///
    /// The caller is responsible for checking the length of the stack.
    #[inline]
    pub unsafe fn pop_unsafe(&mut self) -> U256 {
        self.data.pop().unwrap_unchecked()
    }

    /// Peeks the top of the stack.
    ///
    /// # Safety
    ///
    /// The caller is responsible for checking the length of the stack.
    #[inline]
    pub unsafe fn top_unsafe(&mut self) -> &mut U256 {
        let len = self.data.len();
        self.data.get_unchecked_mut(len - 1)
    }

    /// Pop the topmost value, returning the value and the new topmost value.
    ///
    /// # Safety
    ///
    /// The caller is responsible for checking the length of the stack.
    #[inline]
    pub unsafe fn pop_top_unsafe(&mut self) -> (U256, &mut U256) {
        let pop = self.pop_unsafe();
        let top = self.top_unsafe();
        (pop, top)
    }

    /// Pops 2 values from the stack.
    ///
    /// # Safety
    ///
    /// The caller is responsible for checking the length of the stack.
    #[inline]
    pub unsafe fn pop2_unsafe(&mut self) -> (U256, U256) {
        let pop1 = self.pop_unsafe();
        let pop2 = self.pop_unsafe();
        (pop1, pop2)
    }

    /// Pops 2 values from the stack and returns them, in addition to the new topmost value.
    ///
    /// # Safety
    ///
    /// The caller is responsible for checking the length of the stack.
    #[inline]
    pub unsafe fn pop2_top_unsafe(&mut self) -> (U256, U256, &mut U256) {
        let pop1 = self.pop_unsafe();
        let pop2 = self.pop_unsafe();
        let top = self.top_unsafe();

        (pop1, pop2, top)
    }

    /// Pops 3 values from the stack.
    ///
    /// # Safety
    ///
    /// The caller is responsible for checking the length of the stack.
    #[inline]
    pub unsafe fn pop3_unsafe(&mut self) -> (U256, U256, U256) {
        let pop1 = self.pop_unsafe();
        let pop2 = self.pop_unsafe();
        let pop3 = self.pop_unsafe();

        (pop1, pop2, pop3)
    }

    /// Pops 4 values from the stack.
    ///
    /// # Safety
    ///
    /// The caller is responsible for checking the length of the stack.
    #[inline]
    pub unsafe fn pop4_unsafe(&mut self) -> (U256, U256, U256, U256) {
        let pop1 = self.pop_unsafe();
        let pop2 = self.pop_unsafe();
        let pop3 = self.pop_unsafe();
        let pop4 = self.pop_unsafe();

        (pop1, pop2, pop3, pop4)
    }

    /// Pops 5 values from the stack.
    ///
    /// # Safety
    ///
    /// The caller is responsible for checking the length of the stack.
    #[inline]
    pub unsafe fn pop5_unsafe(&mut self) -> (U256, U256, U256, U256, U256) {
        let pop1 = self.pop_unsafe();
        let pop2 = self.pop_unsafe();
        let pop3 = self.pop_unsafe();
        let pop4 = self.pop_unsafe();
        let pop5 = self.pop_unsafe();

        (pop1, pop2, pop3, pop4, pop5)
    }

    /// Push a new value into the stack. If it will exceed the stack limit,
    /// returns `StackOverflow` error and leaves the stack unchanged.
    #[inline]
    pub fn push_b256(&mut self, value: B256) -> Result<(), InstructionResult> {
        self.push(value.into())
    }

    /// Push a new value onto the stack.
    ///
    /// If it will exceed the stack limit, returns `StackOverflow` error and leaves the stack
    /// unchanged.
    #[inline]
    pub fn push(&mut self, value: U256) -> Result<(), InstructionResult> {
        // Allows the compiler to optimize out the `Vec::push` capacity check.
        assume!(self.data.capacity() == STACK_LIMIT);
        if self.data.len() == STACK_LIMIT {
            return Err(InstructionResult::StackOverflow);
        }
        self.data.push(value);
        Ok(())
    }

    /// Peek a value at given index for the stack, where the top of
    /// the stack is at index `0`. If the index is too large,
    /// `StackError::Underflow` is returned.
    #[inline]
    pub fn peek(&self, no_from_top: usize) -> Result<U256, InstructionResult> {
        if self.data.len() > no_from_top {
            Ok(self.data[self.data.len() - no_from_top - 1])
        } else {
            Err(InstructionResult::StackUnderflow)
        }
    }

    /// Duplicates the `N`th value from the top of the stack.
    ///
    /// # Panics
    ///
    /// Panics if `n` is 0.
    #[inline]
    #[cfg_attr(debug_assertions, track_caller)]
    pub fn dup(&mut self, n: usize) -> Result<(), InstructionResult> {
        assume!(n > 0, "attempted to dup 0");
        let len = self.data.len();
        if len < n {
            Err(InstructionResult::StackUnderflow)
        } else if len + 1 > STACK_LIMIT {
            Err(InstructionResult::StackOverflow)
        } else {
            // SAFETY: check for out of bounds is done above and it makes this safe to do.
            unsafe {
                let ptr = self.data.as_mut_ptr().add(len);
                ptr::copy_nonoverlapping(ptr.sub(n), ptr, 1);
                self.data.set_len(len + 1);
            }
            Ok(())
        }
    }

    /// Swaps the topmost value with the `N`th value from the top.
    ///
    /// # Panics
    ///
    /// Panics if `n` is 0.
    #[inline(always)]
    #[cfg_attr(debug_assertions, track_caller)]
    pub fn swap(&mut self, n: usize) -> Result<(), InstructionResult> {
        self.exchange(0, n)
    }

    /// Exchange two values on the stack.
    ///
    /// `n` is the first index, and the second index is calculated as `n + m`.
    ///
    /// # Panics
    ///
    /// Panics if `m` is zero.
    #[inline]
    #[cfg_attr(debug_assertions, track_caller)]
    pub fn exchange(&mut self, n: usize, m: usize) -> Result<(), InstructionResult> {
        assume!(m > 0, "overlapping exchange");
        let len = self.data.len();
        let n_m_index = n + m;
        if n_m_index >= len {
            return Err(InstructionResult::StackUnderflow);
        }
        // SAFETY: `n` and `n_m` are checked to be within bounds, and they don't overlap.
        unsafe {
            // NOTE: `ptr::swap_nonoverlapping` is more efficient than `slice::swap` or `ptr::swap`
            // because it operates under the assumption that the pointers do not overlap,
            // eliminating an intemediate copy,
            // which is a condition we know to be true in this context.
            let top = self.data.as_mut_ptr().add(len - 1);
            core::ptr::swap_nonoverlapping(top.sub(n), top.sub(n_m_index), 1);
        }
        Ok(())
    }

    /// Pushes an arbitrary length slice of bytes onto the stack, padding the last word with zeros
    /// if necessary.
    #[inline]
    pub fn push_slice(&mut self, slice: &[u8]) -> Result<(), InstructionResult> {
        if slice.is_empty() {
            return Ok(());
        }

        let n_words = (slice.len() + 31) / 32;
        let new_len = self.data.len() + n_words;
        if new_len > STACK_LIMIT {
            return Err(InstructionResult::StackOverflow);
        }

        // SAFETY: length checked above.
        unsafe {
            let dst = self.data.as_mut_ptr().add(self.data.len()).cast::<u64>();
            self.data.set_len(new_len);

            let mut i = 0;

            // write full words
            let words = slice.chunks_exact(32);
            let partial_last_word = words.remainder();
            for word in words {
                // Note: we unroll `U256::from_be_bytes` here to write directly into the buffer,
                // instead of creating a 32 byte array on the stack and then copying it over.
                for l in word.rchunks_exact(8) {
                    dst.add(i).write(u64::from_be_bytes(l.try_into().unwrap()));
                    i += 1;
                }
            }

            if partial_last_word.is_empty() {
                return Ok(());
            }

            // write limbs of partial last word
            let limbs = partial_last_word.rchunks_exact(8);
            let partial_last_limb = limbs.remainder();
            for l in limbs {
                dst.add(i).write(u64::from_be_bytes(l.try_into().unwrap()));
                i += 1;
            }

            // write partial last limb by padding with zeros
            if !partial_last_limb.is_empty() {
                let mut tmp = [0u8; 8];
                tmp[8 - partial_last_limb.len()..].copy_from_slice(partial_last_limb);
                dst.add(i).write(u64::from_be_bytes(tmp));
                i += 1;
            }

            debug_assert_eq!((i + 3) / 4, n_words, "wrote too much");

            // zero out upper bytes of last word
            let m = i % 4; // 32 / 8
            if m != 0 {
                dst.add(i).write_bytes(0, 4 - m);
            }
        }

        Ok(())
    }

    /// Set a value at given index for the stack, where the top of the
    /// stack is at index `0`. If the index is too large,
    /// `StackError::Underflow` is returned.
    #[inline]
    pub fn set(&mut self, no_from_top: usize, val: U256) -> Result<(), InstructionResult> {
        if self.data.len() > no_from_top {
            let len = self.data.len();
            self.data[len - no_from_top - 1] = val;
            Ok(())
        } else {
            Err(InstructionResult::StackUnderflow)
        }
    }
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for Stack {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let mut data = Vec::<U256>::deserialize(deserializer)?;
        if data.len() > STACK_LIMIT {
            return Err(serde::de::Error::custom(std::format!(
                "stack size exceeds limit: {} > {}",
                data.len(),
                STACK_LIMIT
            )));
        }
        data.reserve(STACK_LIMIT - data.len());
        Ok(Self { data })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn run(f: impl FnOnce(&mut Stack)) {
        let mut stack = Stack::new();
        // fill capacity with non-zero values
        unsafe {
            stack.data.set_len(STACK_LIMIT);
            stack.data.fill(U256::MAX);
            stack.data.set_len(0);
        }
        f(&mut stack);
    }

    #[test]
    fn push_slices() {
        // no-op
        run(|stack| {
            stack.push_slice(b"").unwrap();
            assert_eq!(stack.data, []);
        });

        // one word
        run(|stack| {
            stack.push_slice(&[42]).unwrap();
            assert_eq!(stack.data, [U256::from(42)]);
        });

        let n = 0x1111_2222_3333_4444_5555_6666_7777_8888_u128;
        run(|stack| {
            stack.push_slice(&n.to_be_bytes()).unwrap();
            assert_eq!(stack.data, [U256::from(n)]);
        });

        // more than one word
        run(|stack| {
            let b = [U256::from(n).to_be_bytes::<32>(); 2].concat();
            stack.push_slice(&b).unwrap();
            assert_eq!(stack.data, [U256::from(n); 2]);
        });

        run(|stack| {
            let b = [&[0; 32][..], &[42u8]].concat();
            stack.push_slice(&b).unwrap();
            assert_eq!(stack.data, [U256::ZERO, U256::from(42)]);
        });

        run(|stack| {
            let b = [&[0; 32][..], &n.to_be_bytes()].concat();
            stack.push_slice(&b).unwrap();
            assert_eq!(stack.data, [U256::ZERO, U256::from(n)]);
        });

        run(|stack| {
            let b = [&[0; 64][..], &n.to_be_bytes()].concat();
            stack.push_slice(&b).unwrap();
            assert_eq!(stack.data, [U256::ZERO, U256::ZERO, U256::from(n)]);
        });
    }

    #[test]
    fn stack_clone() {
        // Test cloning an empty stack
        let empty_stack = Stack::new();
        let cloned_empty = empty_stack.clone();
        assert_eq!(empty_stack, cloned_empty);
        assert_eq!(cloned_empty.len(), 0);
        assert_eq!(cloned_empty.data().capacity(), STACK_LIMIT);

        // Test cloning a partially filled stack
        let mut partial_stack = Stack::new();
        for i in 0..10 {
            partial_stack.push(U256::from(i)).unwrap();
        }
        let mut cloned_partial = partial_stack.clone();
        assert_eq!(partial_stack, cloned_partial);
        assert_eq!(cloned_partial.len(), 10);
        assert_eq!(cloned_partial.data().capacity(), STACK_LIMIT);

        // Test that modifying the clone doesn't affect the original
        cloned_partial.push(U256::from(100)).unwrap();
        assert_ne!(partial_stack, cloned_partial);
        assert_eq!(partial_stack.len(), 10);
        assert_eq!(cloned_partial.len(), 11);

        // Test cloning a full stack
        let mut full_stack = Stack::new();
        for i in 0..STACK_LIMIT {
            full_stack.push(U256::from(i)).unwrap();
        }
        let mut cloned_full = full_stack.clone();
        assert_eq!(full_stack, cloned_full);
        assert_eq!(cloned_full.len(), STACK_LIMIT);
        assert_eq!(cloned_full.data().capacity(), STACK_LIMIT);

        // Test push to the full original or cloned stack should return StackOverflow
        assert_eq!(
            full_stack.push(U256::from(100)),
            Err(InstructionResult::StackOverflow)
        );
        assert_eq!(
            cloned_full.push(U256::from(100)),
            Err(InstructionResult::StackOverflow)
        );
    }
}