revm_precompile/bls12_381/blst.rs
1// This module contains a safe wrapper around the blst library.
2
3use crate::{
4 bls12_381_const::{
5 FP_LENGTH, FP_PAD_BY, PADDED_FP_LENGTH, PADDED_G1_LENGTH, PADDED_G2_LENGTH, SCALAR_LENGTH,
6 SCALAR_LENGTH_BITS,
7 },
8 PrecompileError,
9};
10use blst::{
11 blst_bendian_from_fp, blst_final_exp, blst_fp, blst_fp12, blst_fp12_is_one, blst_fp12_mul,
12 blst_fp2, blst_fp_from_bendian, blst_map_to_g1, blst_map_to_g2, blst_miller_loop, blst_p1,
13 blst_p1_add_or_double_affine, blst_p1_affine, blst_p1_affine_in_g1, blst_p1_affine_on_curve,
14 blst_p1_from_affine, blst_p1_mult, blst_p1_to_affine, blst_p2, blst_p2_add_or_double_affine,
15 blst_p2_affine, blst_p2_affine_in_g2, blst_p2_affine_on_curve, blst_p2_from_affine,
16 blst_p2_mult, blst_p2_to_affine, blst_scalar, blst_scalar_from_bendian, MultiPoint,
17};
18use std::string::ToString;
19use std::vec::Vec;
20
21// Big-endian non-Montgomery form.
22const MODULUS_REPR: [u8; 48] = [
23 0x1a, 0x01, 0x11, 0xea, 0x39, 0x7f, 0xe6, 0x9a, 0x4b, 0x1b, 0xa7, 0xb6, 0x43, 0x4b, 0xac, 0xd7,
24 0x64, 0x77, 0x4b, 0x84, 0xf3, 0x85, 0x12, 0xbf, 0x67, 0x30, 0xd2, 0xa0, 0xf6, 0xb0, 0xf6, 0x24,
25 0x1e, 0xab, 0xff, 0xfe, 0xb1, 0x53, 0xff, 0xff, 0xb9, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xab,
26];
27
28#[inline]
29fn p1_to_affine(p: &blst_p1) -> blst_p1_affine {
30 let mut p_affine = blst_p1_affine::default();
31 // SAFETY: both inputs are valid blst types
32 unsafe { blst_p1_to_affine(&mut p_affine, p) };
33 p_affine
34}
35
36#[inline]
37fn p1_from_affine(p_affine: &blst_p1_affine) -> blst_p1 {
38 let mut p = blst_p1::default();
39 // SAFETY: both inputs are valid blst types
40 unsafe { blst_p1_from_affine(&mut p, p_affine) };
41 p
42}
43
44#[inline]
45fn p1_add_or_double(p: &blst_p1, p_affine: &blst_p1_affine) -> blst_p1 {
46 let mut result = blst_p1::default();
47 // SAFETY: all inputs are valid blst types
48 unsafe { blst_p1_add_or_double_affine(&mut result, p, p_affine) };
49 result
50}
51
52#[inline]
53fn p2_to_affine(p: &blst_p2) -> blst_p2_affine {
54 let mut p_affine = blst_p2_affine::default();
55 // SAFETY: both inputs are valid blst types
56 unsafe { blst_p2_to_affine(&mut p_affine, p) };
57 p_affine
58}
59
60#[inline]
61fn p2_from_affine(p_affine: &blst_p2_affine) -> blst_p2 {
62 let mut p = blst_p2::default();
63 // SAFETY: both inputs are valid blst types
64 unsafe { blst_p2_from_affine(&mut p, p_affine) };
65 p
66}
67
68#[inline]
69fn p2_add_or_double(p: &blst_p2, p_affine: &blst_p2_affine) -> blst_p2 {
70 let mut result = blst_p2::default();
71 // SAFETY: all inputs are valid blst types
72 unsafe { blst_p2_add_or_double_affine(&mut result, p, p_affine) };
73 result
74}
75
76/// p1_add_affine adds two G1 points in affine form, returning the result in affine form
77///
78/// Note: `a` and `b` can be the same, ie this method is safe to call if one wants
79/// to essentially double a point
80#[inline]
81pub(super) fn p1_add_affine(a: &blst_p1_affine, b: &blst_p1_affine) -> blst_p1_affine {
82 // Convert first point to Jacobian coordinates
83 let a_jacobian = p1_from_affine(a);
84
85 // Add second point (in affine) to first point (in Jacobian)
86 let sum_jacobian = p1_add_or_double(&a_jacobian, b);
87
88 // Convert result back to affine coordinates
89 p1_to_affine(&sum_jacobian)
90}
91
92/// Add two G2 points in affine form, returning the result in affine form
93#[inline]
94pub(super) fn p2_add_affine(a: &blst_p2_affine, b: &blst_p2_affine) -> blst_p2_affine {
95 // Convert first point to Jacobian coordinates
96 let a_jacobian = p2_from_affine(a);
97
98 // Add second point (in affine) to first point (in Jacobian)
99 let sum_jacobian = p2_add_or_double(&a_jacobian, b);
100
101 // Convert result back to affine coordinates
102 p2_to_affine(&sum_jacobian)
103}
104
105/// Performs a G1 scalar multiplication
106///
107/// Takes a G1 point in affine form and a scalar, and returns the result
108/// of the scalar multiplication in affine form
109///
110/// Note: The scalar is expected to be in Big Endian format.
111#[inline]
112fn p1_scalar_mul(p: &blst_p1_affine, scalar: &blst_scalar) -> blst_p1_affine {
113 // Convert point to Jacobian coordinates
114 let p_jacobian = p1_from_affine(p);
115
116 let mut result = blst_p1::default();
117
118 // SAFETY: all inputs are valid blst types
119 unsafe {
120 blst_p1_mult(
121 &mut result,
122 &p_jacobian,
123 scalar.b.as_ptr(),
124 scalar.b.len() * 8,
125 )
126 };
127
128 // Convert result back to affine coordinates
129 p1_to_affine(&result)
130}
131
132/// Performs a G2 scalar multiplication
133///
134/// Takes a G2 point in affine form and a scalar, and returns the result
135/// of the scalar multiplication in affine form
136///
137/// Note: The scalar is expected to be in Big Endian format.
138#[inline]
139fn p2_scalar_mul(p: &blst_p2_affine, scalar: &blst_scalar) -> blst_p2_affine {
140 // Convert point to Jacobian coordinates
141 let p_jacobian = p2_from_affine(p);
142
143 let mut result = blst_p2::default();
144 // SAFETY: all inputs are valid blst types
145 unsafe {
146 blst_p2_mult(
147 &mut result,
148 &p_jacobian,
149 scalar.b.as_ptr(),
150 scalar.b.len() * 8,
151 )
152 };
153
154 // Convert result back to affine coordinates
155 p2_to_affine(&result)
156}
157
158/// Performs multi-scalar multiplication (MSM) for G1 points
159///
160/// Takes a vector of G1 points and corresponding scalars, and returns their weighted sum
161///
162/// Note: This method assumes that `g1_points` does not contain any points at infinity.
163#[inline]
164pub(super) fn p1_msm(g1_points: Vec<blst_p1_affine>, scalars: Vec<blst_scalar>) -> blst_p1_affine {
165 assert_eq!(
166 g1_points.len(),
167 scalars.len(),
168 "number of scalars should equal the number of g1 points"
169 );
170
171 // When no inputs are given, we return the point at infinity.
172 // This case can only trigger, if the initial MSM pairs
173 // all had, either a zero scalar or the point at infinity.
174 //
175 // The precompile will return an error, if the initial input
176 // was empty, in accordance with EIP-2537.
177 if g1_points.is_empty() {
178 return blst_p1_affine::default();
179 }
180
181 // When there is only a single point, we use a simpler scalar multiplication
182 // procedure
183 if g1_points.len() == 1 {
184 return p1_scalar_mul(&g1_points[0], &scalars[0]);
185 }
186
187 let scalars_bytes: Vec<_> = scalars.into_iter().flat_map(|s| s.b).collect();
188 // Perform multi-scalar multiplication
189 let multiexp = g1_points.mult(&scalars_bytes, SCALAR_LENGTH_BITS);
190
191 // Convert result back to affine coordinates
192 p1_to_affine(&multiexp)
193}
194
195/// Performs multi-scalar multiplication (MSM) for G2 points
196///
197/// Takes a vector of G2 points and corresponding scalars, and returns their weighted sum
198///
199/// Note: Scalars are expected to be in Big Endian format.
200/// This method assumes that `g2_points` does not contain any points at infinity.
201#[inline]
202pub(super) fn p2_msm(g2_points: Vec<blst_p2_affine>, scalars: Vec<blst_scalar>) -> blst_p2_affine {
203 assert_eq!(
204 g2_points.len(),
205 scalars.len(),
206 "number of scalars should equal the number of g2 points"
207 );
208
209 // When no inputs are given, we return the point at infinity.
210 // This case can only trigger, if the initial MSM pairs
211 // all had, either a zero scalar or the point at infinity.
212 //
213 // The precompile will return an error, if the initial input
214 // was empty, in accordance with EIP-2537.
215 if g2_points.is_empty() {
216 return blst_p2_affine::default();
217 }
218
219 // When there is only a single point, we use a simpler scalar multiplication
220 // procedure
221 if g2_points.len() == 1 {
222 return p2_scalar_mul(&g2_points[0], &scalars[0]);
223 }
224
225 let scalars_bytes: Vec<_> = scalars.into_iter().flat_map(|s| s.b).collect();
226
227 // Perform multi-scalar multiplication
228 let multiexp = g2_points.mult(&scalars_bytes, SCALAR_LENGTH_BITS);
229
230 // Convert result back to affine coordinates
231 p2_to_affine(&multiexp)
232}
233
234/// Maps a field element to a G1 point
235///
236/// Takes a field element (blst_fp) and returns the corresponding G1 point in affine form
237#[inline]
238pub(super) fn map_fp_to_g1(fp: &blst_fp) -> blst_p1_affine {
239 // Create a new G1 point in Jacobian coordinates
240 let mut p = blst_p1::default();
241
242 // Map the field element to a point on the curve
243 // SAFETY: `p` and `fp` are blst values
244 // Third argument is unused if null
245 unsafe { blst_map_to_g1(&mut p, fp, core::ptr::null()) };
246
247 // Convert to affine coordinates
248 p1_to_affine(&p)
249}
250
251/// Maps a field element to a G2 point
252///
253/// Takes a field element (blst_fp2) and returns the corresponding G2 point in affine form
254#[inline]
255pub(super) fn map_fp2_to_g2(fp2: &blst_fp2) -> blst_p2_affine {
256 // Create a new G2 point in Jacobian coordinates
257 let mut p = blst_p2::default();
258
259 // Map the field element to a point on the curve
260 // SAFETY: `p` and `fp2` are blst values
261 // Third argument is unused if null
262 unsafe { blst_map_to_g2(&mut p, fp2, core::ptr::null()) };
263
264 // Convert to affine coordinates
265 p2_to_affine(&p)
266}
267
268/// Computes a single miller loop for a given G1, G2 pair
269#[inline]
270fn compute_miller_loop(g1: &blst_p1_affine, g2: &blst_p2_affine) -> blst_fp12 {
271 let mut result = blst_fp12::default();
272
273 // SAFETY: All arguments are valid blst types
274 unsafe { blst_miller_loop(&mut result, g2, g1) }
275
276 result
277}
278
279/// multiply_fp12 multiplies two fp12 elements
280#[inline]
281fn multiply_fp12(a: &blst_fp12, b: &blst_fp12) -> blst_fp12 {
282 let mut result = blst_fp12::default();
283
284 // SAFETY: All arguments are valid blst types
285 unsafe { blst_fp12_mul(&mut result, a, b) }
286
287 result
288}
289
290/// final_exp computes the final exponentiation on an fp12 element
291#[inline]
292fn final_exp(f: &blst_fp12) -> blst_fp12 {
293 let mut result = blst_fp12::default();
294
295 // SAFETY: All arguments are valid blst types
296 unsafe { blst_final_exp(&mut result, f) }
297
298 result
299}
300
301/// is_fp12_one checks if an fp12 element equals
302/// multiplicative identity element, one
303#[inline]
304fn is_fp12_one(f: &blst_fp12) -> bool {
305 // SAFETY: argument is a valid blst type
306 unsafe { blst_fp12_is_one(f) }
307}
308
309/// pairing_check performs a pairing check on a list of G1 and G2 point pairs and
310/// returns true if the result is equal to the identity element.
311#[inline]
312pub(super) fn pairing_check(pairs: &[(blst_p1_affine, blst_p2_affine)]) -> bool {
313 // When no inputs are given, we return true
314 // This case can only trigger, if the initial pairing components
315 // all had, either the G1 element as the point at infinity
316 // or the G2 element as the point at infinity.
317 //
318 // The precompile will return an error, if the initial input
319 // was empty, in accordance with EIP-2537.
320 if pairs.is_empty() {
321 return true;
322 }
323 // Compute the miller loop for the first pair
324 let (first_g1, first_g2) = &pairs[0];
325 let mut acc = compute_miller_loop(first_g1, first_g2);
326
327 // For the remaining pairs, compute miller loop and multiply with the accumulated result
328 for (g1, g2) in pairs.iter().skip(1) {
329 let ml = compute_miller_loop(g1, g2);
330 acc = multiply_fp12(&acc, &ml);
331 }
332
333 // Apply final exponentiation and check if result is 1
334 let final_result = final_exp(&acc);
335
336 // Check if the result is one (identity element)
337 is_fp12_one(&final_result)
338}
339
340/// Encodes a G1 point in affine format into byte slice with padded elements.
341///
342/// Note: The encoded bytes are in Big Endian format.
343pub(super) fn encode_g1_point(input: &blst_p1_affine) -> [u8; PADDED_G1_LENGTH] {
344 let mut out = [0u8; PADDED_G1_LENGTH];
345 fp_to_bytes(&mut out[..PADDED_FP_LENGTH], &input.x);
346 fp_to_bytes(&mut out[PADDED_FP_LENGTH..], &input.y);
347 out
348}
349
350/// Encodes a single finite field element into byte slice with padding.
351///
352/// Note: The encoded bytes are in Big Endian format.
353fn fp_to_bytes(out: &mut [u8], input: &blst_fp) {
354 if out.len() != PADDED_FP_LENGTH {
355 return;
356 }
357 let (padding, rest) = out.split_at_mut(FP_PAD_BY);
358 padding.fill(0);
359 // SAFETY: Out length is checked previously, `input` is a blst value.
360 unsafe { blst_bendian_from_fp(rest.as_mut_ptr(), input) };
361}
362
363/// Returns a `blst_p1_affine` from the provided byte slices, which represent the x and y
364/// affine coordinates of the point.
365///
366/// Note: Coordinates are expected to be in Big Endian format.
367///
368/// - If the x or y coordinate do not represent a canonical field element, an error is returned.
369/// See [read_fp] for more information.
370/// - If the point is not on the curve, an error is returned.
371fn decode_g1_on_curve(
372 p0_x: &[u8; FP_LENGTH],
373 p0_y: &[u8; FP_LENGTH],
374) -> Result<blst_p1_affine, PrecompileError> {
375 let out = blst_p1_affine {
376 x: read_fp(p0_x)?,
377 y: read_fp(p0_y)?,
378 };
379
380 // From EIP-2537:
381 //
382 // Error cases:
383 //
384 // * An input is neither a point on the G1 elliptic curve nor the infinity point
385 //
386 // SAFETY: Out is a blst value.
387 if unsafe { !blst_p1_affine_on_curve(&out) } {
388 return Err(PrecompileError::Other(
389 "Element not on G1 curve".to_string(),
390 ));
391 }
392
393 Ok(out)
394}
395
396/// Extracts a G1 point in Affine format from the x and y coordinates.
397///
398/// Note: Coordinates are expected to be in Big Endian format.
399/// By default, subgroup checks are performed.
400pub(super) fn read_g1(
401 x: &[u8; FP_LENGTH],
402 y: &[u8; FP_LENGTH],
403) -> Result<blst_p1_affine, PrecompileError> {
404 _extract_g1_input(x, y, true)
405}
406/// Extracts a G1 point in Affine format from the x and y coordinates
407/// without performing a subgroup check.
408///
409/// Note: Coordinates are expected to be in Big Endian format.
410/// Skipping subgroup checks can introduce security issues.
411/// This method should only be called if:
412/// - The EIP specifies that no subgroup check should be performed
413/// - One can be certain that the point is in the correct subgroup.
414pub(super) fn read_g1_no_subgroup_check(
415 x: &[u8; FP_LENGTH],
416 y: &[u8; FP_LENGTH],
417) -> Result<blst_p1_affine, PrecompileError> {
418 _extract_g1_input(x, y, false)
419}
420/// Extracts a G1 point in Affine format from the x and y coordinates.
421///
422/// Note: Coordinates are expected to be in Big Endian format.
423/// This function will perform a G1 subgroup check if `subgroup_check` is set to `true`.
424fn _extract_g1_input(
425 x: &[u8; FP_LENGTH],
426 y: &[u8; FP_LENGTH],
427 subgroup_check: bool,
428) -> Result<blst_p1_affine, PrecompileError> {
429 let out = decode_g1_on_curve(x, y)?;
430
431 if subgroup_check {
432 // NB: Subgroup checks
433 //
434 // Scalar multiplications, MSMs and pairings MUST perform a subgroup check.
435 //
436 // Implementations SHOULD use the optimized subgroup check method:
437 //
438 // https://eips.ethereum.org/assets/eip-2537/fast_subgroup_checks
439 //
440 // On any input that fail the subgroup check, the precompile MUST return an error.
441 //
442 // As endomorphism acceleration requires input on the correct subgroup, implementers MAY
443 // use endomorphism acceleration.
444 if unsafe { !blst_p1_affine_in_g1(&out) } {
445 return Err(PrecompileError::Other("Element not in G1".to_string()));
446 }
447 }
448 Ok(out)
449}
450
451/// Encodes a G2 point in affine format into byte slice with padded elements.
452///
453/// Note: The encoded bytes are in Big Endian format.
454pub(super) fn encode_g2_point(input: &blst_p2_affine) -> [u8; PADDED_G2_LENGTH] {
455 let mut out = [0u8; PADDED_G2_LENGTH];
456 fp_to_bytes(&mut out[..PADDED_FP_LENGTH], &input.x.fp[0]);
457 fp_to_bytes(
458 &mut out[PADDED_FP_LENGTH..2 * PADDED_FP_LENGTH],
459 &input.x.fp[1],
460 );
461 fp_to_bytes(
462 &mut out[2 * PADDED_FP_LENGTH..3 * PADDED_FP_LENGTH],
463 &input.y.fp[0],
464 );
465 fp_to_bytes(
466 &mut out[3 * PADDED_FP_LENGTH..4 * PADDED_FP_LENGTH],
467 &input.y.fp[1],
468 );
469 out
470}
471
472/// Returns a `blst_p2_affine` from the provided byte slices, which represent the x and y
473/// affine coordinates of the point.
474///
475/// Note: Coordinates are expected to be in Big Endian format.
476///
477/// - If the x or y coordinate do not represent a canonical field element, an error is returned.
478/// See [read_fp2] for more information.
479/// - If the point is not on the curve, an error is returned.
480fn decode_g2_on_curve(
481 x1: &[u8; FP_LENGTH],
482 x2: &[u8; FP_LENGTH],
483 y1: &[u8; FP_LENGTH],
484 y2: &[u8; FP_LENGTH],
485) -> Result<blst_p2_affine, PrecompileError> {
486 let out = blst_p2_affine {
487 x: read_fp2(x1, x2)?,
488 y: read_fp2(y1, y2)?,
489 };
490
491 // From EIP-2537:
492 //
493 // Error cases:
494 //
495 // * An input is neither a point on the G2 elliptic curve nor the infinity point
496 //
497 // SAFETY: Out is a blst value.
498 if unsafe { !blst_p2_affine_on_curve(&out) } {
499 return Err(PrecompileError::Other(
500 "Element not on G2 curve".to_string(),
501 ));
502 }
503
504 Ok(out)
505}
506
507/// Creates a blst_fp2 element from two field elements.
508///
509/// Field elements are expected to be in Big Endian format.
510/// Returns an error if either of the input field elements is not canonical.
511pub(super) fn read_fp2(
512 input_1: &[u8; FP_LENGTH],
513 input_2: &[u8; FP_LENGTH],
514) -> Result<blst_fp2, PrecompileError> {
515 let fp_1 = read_fp(input_1)?;
516 let fp_2 = read_fp(input_2)?;
517
518 let fp2 = blst_fp2 { fp: [fp_1, fp_2] };
519
520 Ok(fp2)
521}
522/// Extracts a G2 point in Affine format from the x and y coordinates.
523///
524/// Note: Coordinates are expected to be in Big Endian format.
525/// By default, subgroup checks are performed.
526pub(super) fn read_g2(
527 a_x_0: &[u8; FP_LENGTH],
528 a_x_1: &[u8; FP_LENGTH],
529 a_y_0: &[u8; FP_LENGTH],
530 a_y_1: &[u8; FP_LENGTH],
531) -> Result<blst_p2_affine, PrecompileError> {
532 _extract_g2_input(a_x_0, a_x_1, a_y_0, a_y_1, true)
533}
534/// Extracts a G2 point in Affine format from the x and y coordinates
535/// without performing a subgroup check.
536///
537/// Note: Coordinates are expected to be in Big Endian format.
538/// Skipping subgroup checks can introduce security issues.
539/// This method should only be called if:
540/// - The EIP specifies that no subgroup check should be performed
541/// - One can be certain that the point is in the correct subgroup.
542pub(super) fn read_g2_no_subgroup_check(
543 a_x_0: &[u8; FP_LENGTH],
544 a_x_1: &[u8; FP_LENGTH],
545 a_y_0: &[u8; FP_LENGTH],
546 a_y_1: &[u8; FP_LENGTH],
547) -> Result<blst_p2_affine, PrecompileError> {
548 _extract_g2_input(a_x_0, a_x_1, a_y_0, a_y_1, false)
549}
550/// Extracts a G2 point in Affine format from the x and y coordinates.
551///
552/// Note: Coordinates are expected to be in Big Endian format.
553/// This function will perform a G2 subgroup check if `subgroup_check` is set to `true`.
554fn _extract_g2_input(
555 a_x_0: &[u8; FP_LENGTH],
556 a_x_1: &[u8; FP_LENGTH],
557 a_y_0: &[u8; FP_LENGTH],
558 a_y_1: &[u8; FP_LENGTH],
559 subgroup_check: bool,
560) -> Result<blst_p2_affine, PrecompileError> {
561 let out = decode_g2_on_curve(a_x_0, a_x_1, a_y_0, a_y_1)?;
562
563 if subgroup_check {
564 // NB: Subgroup checks
565 //
566 // Scalar multiplications, MSMs and pairings MUST perform a subgroup check.
567 //
568 // Implementations SHOULD use the optimized subgroup check method:
569 //
570 // https://eips.ethereum.org/assets/eip-2537/fast_subgroup_checks
571 //
572 // On any input that fail the subgroup check, the precompile MUST return an error.
573 //
574 // As endomorphism acceleration requires input on the correct subgroup, implementers MAY
575 // use endomorphism acceleration.
576 if unsafe { !blst_p2_affine_in_g2(&out) } {
577 return Err(PrecompileError::Other("Element not in G2".to_string()));
578 }
579 }
580 Ok(out)
581}
582
583/// Checks whether or not the input represents a canonical field element
584/// returning the field element if successful.
585///
586/// Note: The field element is expected to be in big endian format.
587pub(super) fn read_fp(input: &[u8; FP_LENGTH]) -> Result<blst_fp, PrecompileError> {
588 if !is_valid_be(input) {
589 return Err(PrecompileError::Other("non-canonical fp value".to_string()));
590 }
591 let mut fp = blst_fp::default();
592 // SAFETY: `input` has fixed length, and `fp` is a blst value.
593 unsafe {
594 // This performs the check for canonical field elements
595 blst_fp_from_bendian(&mut fp, input.as_ptr());
596 }
597
598 Ok(fp)
599}
600
601/// Extracts a scalar from a 32 byte slice representation, decoding the input as a Big Endian
602/// unsigned integer. If the input is not exactly 32 bytes long, an error is returned.
603///
604/// From [EIP-2537](https://eips.ethereum.org/EIPS/eip-2537):
605/// * A scalar for the multiplication operation is encoded as 32 bytes by performing BigEndian
606/// encoding of the corresponding (unsigned) integer.
607///
608/// We do not check that the scalar is a canonical Fr element, because the EIP specifies:
609/// * The corresponding integer is not required to be less than or equal than main subgroup order
610/// `q`.
611pub(super) fn read_scalar(input: &[u8]) -> Result<blst_scalar, PrecompileError> {
612 if input.len() != SCALAR_LENGTH {
613 return Err(PrecompileError::Other(format!(
614 "Input should be {SCALAR_LENGTH} bytes, was {}",
615 input.len()
616 )));
617 }
618
619 let mut out = blst_scalar::default();
620 // SAFETY: `input` length is checked previously, out is a blst value.
621 unsafe {
622 // Note: We do not use `blst_scalar_fr_check` here because, from EIP-2537:
623 //
624 // * The corresponding integer is not required to be less than or equal than main subgroup
625 // order `q`.
626 blst_scalar_from_bendian(&mut out, input.as_ptr())
627 };
628
629 Ok(out)
630}
631
632/// Checks if the input is a valid big-endian representation of a field element.
633fn is_valid_be(input: &[u8; 48]) -> bool {
634 *input < MODULUS_REPR
635}